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On equivariant Euler characteristics
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Abstract. The Euler characteristicofan orbifold M/G as usedin string theoryis
identifiedwith theEuler characteristicofequivariant K -theoryK0(M).

INTRODUCTION

This is an expositorynote drawingthe attentionof physiciststo the relevanceof
equivariarit K -theory for certain topicsin quantum field theory. Ourmain observa-

tion, concerningEulercharacteristics,hasbeenmadeindependentlyby A. Connes,M.

Hopkins(andprobably others),but sinceequivariantK-theory is unfamiliarto most
physicistsit is perhapsusefulto publicizethe situation.

In thephysicsof stringtheory theEulercharacteristicof the targetmanifold (where

thestringmoves)playsanimportantrole, relatedto thenumberof <<generations>>.When

the(compact)manifold M is replacedby a quotientM/G, whereC isa finite group
of symmetries,it wasnoted[7] that thecorrectEulercharacteristicfor stringtheorywas

theexpression:

(1.1) x(M,G) ~‘ x(M~’
9~)

wherethe sum ~‘ is over commutingpairs 91,92 in C,M91’92 is the simultaneous

fixed-point setof 9i ,92 and Cl is theorderof C. Fora freeactionthereis only one
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termin the sumand

(1.2) x(M,C) = x(M) = x(M/C)

coincideswith theEulercharacteristicof themanifold M/G. Forgeneralgroupactions

thethreetermsin (1.2) areall different, andfrom thepoint of view of standardalgebraic

topologyit is not clearwhatspecialsignificancethereis in x( M,C) asdefinedby (1 .1).

The purposeof this note is to give a simple mterpretationof x( M, C) in terms

of equivariant K -theory. The result in question(Theorem I below) is in essencean

elementaryconsequenceof knownfacts.

We recall [7] [11] that Kg( M) is definedastheabeliangroupgeneratedby complex

C-vector bundlesover M (i.e. vectorbundlesendowedwith a C-action coveringthe

actionon M). BecausetheBott periodicitytheoremextendsto the equivariantcase[II

we canextend Kg( M) to a Z2 -graded cohomologytheory

K~(M)= K~(M)®K~(MY

Thegroup K~(M) canl~cexplicitly definedasthe kernelof the restrictionmap

Kg(M x S
1) —‘ K~(M)

givenby theinclusionof apoint in S’.

The groups K~(M), K~(M) are finitely-generatedand so eachhas a rank (=

dim KG ® Q). Ourresult is then:

THEOREM 1. x(M,C) = rank K~(M)—rank K~~(M).

REMARK. When C actsfreely,

K~(M) K~(M/C).

MoreovertheCherncharacterinducesa Z
2 -graded isomorphism

KQ~H’ ,Q)

so thatthetheoremin this casejust reducesto

x(M,C) = x(M/G).

Theorem1, whichdealswith ranks(or dimensions)is a consequenceof a theorem

relating K~(M) to the K-groups of various fixed-pointsets. Theprototypeof such
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resultsis thelocalizationtheoremof [3] which is extensivelyusedin various<<Lefschetz

formulas>>forelliptic operators.Thegeneralresultweneedis

THEOREM 2. Thereis a natural isomorphism

K~(M)®C~~ [K*(M9)®C]

[gI

where Zg is the centralizerof g in G, the sumis overconjugacyclasses[g] in C
and [1Z

9 denotesthe Z9-invariant part.

REMARK. Recallthat K~(M) isnaturallyamoduleovertherepresentationorcharacter
ring

R(C) = K~(point).

After tensoringwith C we can identity this with the ring of class functions on C.
Thus K~(X)® C naturallybreaksup as a directsumover conjugacyclasses.The-

orem2 assertsthat thecomponent(or localization)at [gi is the Z9-invariant partof

~*(~~) ®C.

2. PROOFS

To proveTheorem2 wefirst definehomomorphisms

K~(M)®C —÷ [~*(~~) ®C]

asfollows. If E is a C-vectorbundleover M its restrictionto M~is actedon fibre-
wiseby g andsodecomposesas adirectsumof subbundlesE( foreacheigenvalue(
of g. Put

~tg(E) = E ~

For K’ replaceM by M x S’.
Wenextobservethatboth tennsinTheorem2 are Z2 -gradedperiodiccohomology

theorieson the categoryof compactC-spaces,and that
= ~

[gl

is a naturalhomomorphism.Usingthe generalmachinerydevelopedin [11] it is then

sufficientto checkTheorem2 when M = C/H is a(finite) homogeneousspace.In this
case

K~(C/H)®C~R(H)®C

(G/H)
9/Zh = H-conjugacyclassescontainedin [g]
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and ~ is just thecharacterisomorphism.

We shall now makea numberof additional remarksaboutTheorem2 and its proof
whichmay behelpful.

(I) The localizationtheoremof [3] assertsthat, for a conjugacyclass ‘~ in C, the

~y-componentof K~(M) ® C is isomorphicto the ‘y-component of ~ M~)® C,
where

M1 = U M9.

gEy

In view of this,Theorem2 is equivalentto theassertionthat themap

(21) llM9—~UM9gE~

from the disjoint union II to theambientunion in M, inducesan isomorphismfor the

‘y-component of K~.This is entirely obviousif the ~ are disjoint in M, arid it is

somewhatsurprisingthat it continuesto hold in general.

(2) Usingthe Chemcharacterisomorphismfor M~’we canreplaceK’( M9) ® C
by H*( M9,C). To computethe Lefschetznumber L(h) of an clement h e Zg 011

this we canapply theLefschetzfixed-point formula (allowing for higher-dimensional

fixed point sets)and get

L(~)= x(M9h).

Standardcharactertheorythenleadsto thedimensionformula:

[dim ~°(~~) ®C]2v ~dim[K’(M~®C)] =

= ~
ZgI ~~z

9

Togetherwith Theorem2 this leads at onceto Theorem I, providedwe now sum over

elementsg, ratherthanconjugacyclasses1 g], andnotethat C~/~ZQ~is thenuniber

of suchclasses.

(3) The right sideof the isomorphismin Theorem2, with K~~ C replacedby

C) is the definition of dc-localizedcquivanantcohomologyin the senseof J4J

IS]. Theorem2 is then viewed as a generalizedCherncharacterisomorphismand is
provedin [5] by themethodsindicatedabove.Sincethe proof is given in full detail in
[51we havebeenbrief in our presentation.Themethodsarein anycasequite standard.

In [5] the main emphasisis 011 infinite discretegroups.
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(4) In string theory the right side of (1.1) arises naturally asa sumover conjugacy

classes[g]. Eachterm arisesfrom the spaceof paths

f:{O,I}—~M, f(I)gf(O).

Theorem2 really identifies the contribution of each conjugacy class separately.

3. FURTHER COMMENTS

Oneof thecluesthat suggestedTheoremI is thefactthat the relevant<<Hodgetheory>>

for a Ioop spaceis only Z2-gradedandnot Z-gradecl. This wasexplainedby Witten
in [12] andwasfurtheranalysedin relationto S’-equivariant cohomologyin [2]. The

Z2 -grading suggests K-theory rather than cohomology as the naturalframework,and
this acquires real significance in the C-equivariantcase(for finite C) as shown by

Theorem I.
Another clue was provided by the finite subgroups C of SU(2) and the <<Kleinian

singularities>> to which they give rise.
In fact if M is an algebraic surface with an action of C having isolated fixed points

P (with the standard action locally on C
2) then M/C has singularities which have a

well-known standard resolution by a graph of £ exceptional (rational) curves [6]. Let

(M/C)’ denote the new surface with all singularities resolved. Then Theorem 2 leads

to the following formula

(3.1) ~(M,C) =x((M/C)’).

To seethis we note first that eachfixed point P in M contributes

K~(P) = R(G) in Ks-theory

H*( P, Z) = Z in integralcohomology.

This implies that

x(M,G) = x(M/G) + N(c(C) —I)

where N is the numberof fixed points and c( C) is the number of conjugacy classes

of C. On the other hand, from the resolution

= x(M/G) + N~.

But, by a result of McKay [10]

c(G) =~?+1
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whichestablishes(3.1). As a famousexampletake M to an abeliansurface(complex

torus), C = Z2. ThenN = 16, = I and (M/C)’ is diffeomorphicto a K3 surface

whichhas x = 24. It waswell known to physiciststhat(3.1) held in manyspecialcases

including the K3 surface.

In homotopy theory Hopkins and Kuhn [8] haveinvestigateda hierarchyof gen-

eralizedcohomologytheories(beginningwith H, K*,...) and havefound formulas
involving n-tuples of commutingelementsof C at thenth level of the hierarchy. II is

not clearwhatpreciserelationtheir work hasto the physicsof loop spacesor theEuler

characteristicsstudiedhere.Note howeverthat thetwo formulae

x( M/C) = ~ x( M
9) (Lcfschetzformula

x(M,C) = -~~- ~‘ x(M9’’9~ (TheoremI)
9i 92

suggestthat onemight consider

~“ y( M9’ 92 9~)
Cl 9i&i9~

summedovercommutingtriples, andthatthismighthavesomethingto do with C-cqui-
variantelliptic cohomology(which is essentiallythe nexttheory in the hierarchy).

Finally we would like to drawattentionto a very interestingcommutativealgebra,

derivedfrom equivariant K-theory, whichhasbeenintroducedby Lusztig [9]. This is

KG( C) ® C where C actson itself by conjugation.Themultiplication in this algebra

is inducedby themultiplication in C. It hasbeenpointedout to us by R. Dijkgraaf and

othersthatLusztig’salgebracan be interpretedastile Verlindealgebra,at level zerw for

the finite group C [13], [14]. lt seemsthereforethat Ks-theory appearsverynaturally

in conformalfield theory, at leastwhen C is finite. It would beinterestingto investigate

its role in greaterdetail andin particularto consider KG for compact(non-fIniteI Lie

groups.
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