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On equivariant Euler characteristics
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Abstract. The Euler characteristic of an orbifold M /G as used in string theory is
identified with the Euler characteristic of equivariant K -theory Kg(M).

INTRODUCTION

This is an expository note drawing the attention of physicists to the relevance of
equivariant K -theory for centain topics in quantum field theory. Our main observa-
tion, concerning Euler characteristics, has been made independently by A. Connes, M.
Hopkins (and probably others), but since equivariant K -theory is unfamiliar to most
physicists it is perhaps useful to publicize the situation.

In the physics of string theory the Euler characteristic of the target manifold (where
the string moves) plays an important role, related to the number of «generations». When
the (compact) manifold M is replaced by a quotient M/G, where G is a finite group
of symmetries, it was noted [7] that the correct Euler characteristic for string theory was
the expression:

1
a.n X(M,G) = —= T x(M99)
|G| 9192

where the sum X' is over commuting pairs g,,g, in G, M99 is the simultaneous

fixed-point set of g,,g, and |G| is the order of G. For a free action there is only one
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term in the sum and

(1.2) x(M,G) = x(M) =x(M/G)

1
G|
coincides with the Euler characteristic of the manifold M/G. For general group actions
the three terms in (1.2) are all different, and from the point of view of standard algebraic
topology itis not clear what special significance there isin ¥( M, G) asdefined by (1.1).

The purpose of this note is to give a simple interpretation of x(M,G) in terms
of equivaniant K -theory. The result in question (Theorem 1 below) is in essence an
elementary consequence of known facts.

We recall [7] [11] that K%( M) isdefined as the abelian group generated by complex
G-vector bundles over M (i.e. vector bundles endowed with a G-action covering the
actionon M ). Because the Bott periodicity theorem extends to the equivariant case | 1]
we can extend Kg( M) 104 Z,-graded cohomology theory

KX(M) = Kg(M) ® KH(M).

The group K]G( M) can be explicitly defined as the kernel of the restriction map
KM xS — K(M)

given by the inclusion of a pointin S'.

The groups Kg(M),KCI;(M) are finitely-generated and so cach has a rank (=

dim K, ® Q). Our result is then:

‘THEOREM 1. x(M,G) = rank K&(M)— rank K;(M).

REMARK. When G acts frecly,
KL(M) = K" (M/G).

Moreover the Chern character induces a Z,-graded isomorphism
K'@Q—HC,Q

so that the theorem in this case just reduces to
x(M,G) = x(M/G).

Theorem 1, which deals with ranks (or dimensions) is a consequence of a thcorem
relating K (M) to the K-groups of various fixed-point scts. The prototype of such
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results is the localization theorem of [3] which is extensively used in various «Lefschetz
formulas» for elliptic operators. The general result we need is

THEOREM 2. There 1s a natural isomorphism

K{M)®C= e [K*( M%) ® C)%
g

where Z is the centralizer of g in G, the sum is over conjugacy classes [g] in G
and [ 1% denotes the Z,-invariant part.

REMARK. Recall that K,( M) isnaturally amodule over the representation or character
ring

R(G) = K (point).

After tensoring with C we can identity this with the ring of class functions on G.
Thus K;(X) ® C naturally breaks up as a direct sum over conjugacy classes. The-
orem 2 asserts that the component (or localization) at [g] is the Z g—invariant part of
K* (M%) ®C.

2. PROOFS

To prove Theorem 2 we first define homomorphisms
¢, K&(M) ®C — [K* (M%) ® C1%

as follows. If F isa G-vector bundle over M its restriction to M? is acted on fibre-
wise by g and so decomposes as a direct sum of subbundles E, for each eigenvalue ¢
of g. Put

$(B) = £ ¢B,

For K! replace M by M x S'.
We next observe that both terms in Theorem 2 are Z, -graded periodic cohomology
theories on the category of compact G-spaces, and that

¢=[€B¢g

is a natural homomorphism. Using the general machinery developed in [11] it is then
sufficient to check Theorem 2 when M = G/ H is a (finite) homogeneous space. In this
case

Ko(G/IHY® C¥ R(H)®C
(G/H)?/Z, = H-conjugacy classes contained in [ g]
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and ¢ is just the character isomorphism.
We shall now make a number of additional remarks about Theorem 2 and its proof
which may be helpful.

(1) The localization theorem of [3] asserts that, for a conjugacy class v in G, the
v-component of K;(M) & C is isomorphic to the y-component of K (M7) & C,
where

M7= U M.

g&7

In view of this, Theorem 2 is equivalent 10 the assertion that the map

H M — U M,
2.1 9€7 9€7
from the disjoint union 1 to the ambient union in M, induces an isomorphism for the
v-component of K¢, This is entirely obvious if the M9 are disjoint in M, and it is
somewhat surprising that it continues to hold in general.

(2) Using the Chemn character isomorphism for M9 we can replace K*(M9) & C
by H*(MY,C). To compute the Lefschetz number L(h) of an element h € Zg on
this we can apply the Lefschetz fixed-point formula (allowing for higher-dimensional
fixed point sets) and get

L(h) = x(M®").
Standard character theory then leads to the dimension formula;
[dim K°(M9) & C1% —dim[ K" (M*® C)|% =

- s M
1Z,| hez,
Together with Theorem 2 this lcads at once to Theorem 1, provided we now sum over
clements g, rather than conjugacy classes | g, and note that |G]/|Z,]| is the number
of such classes.

(3) The right side of the isomorphism in Theorem 2, with K* & (' replaced by
H*( ,C) is the definition of de-localized cquivariant cohomology in the sense of |4
[5}. Theorem 2 is then viewed as a generalized Chemn character 1somorphism and is
proved in [5] by the methods indicated above. Since the proof is given in full detail in
[5] we have been bricf in our presentation. The methods are in any case quite standard.
In [5] the main emphasis is on infinite discrete groups.
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(4) In string theory the right side of (1.1) arises naturally as a sum over conjugacy
classes [g]. Each term arises from the space of paths

F:{0,1} =M,  f(1) =gf(0).

Theorem 2 really identifies the contribution of each conjugacy class separately.

3. FURTHER COMMENTS

One of the clues that suggested Theorem 1 is the fact that the relevant «Hodge theory»
for a loop space is only Z,-graded and not Z-graded. This was explained by Witten
in [12] and was further analysed in relation to S'-equivariant cohomology in [2]. The
Z,-grading suggests K -theory rather than cohomology as the natural framework, and
this acquires real significance in the G-equivariant case (for finite G) as shown by
Theorem 1. .

Another clue was provided by the finite subgroups G of SU(2) and the «Kleinian
singularities» to which they give rise.

In factif M is an algebraic surface with an action of G having isolated fixed points
P (with the standard action locally on C?) then M/G has singularities which have a
well-known standard resolution by a graph of £ exceptional (rational) curves [6]. Let
(M/G)' denote the new surface with all singularities resolved. Then Theorem 2 leads
to the following formula

(3.1 x(M,G) = x((M/G)".

To see this we note first that each fixed point P in M contributes

Ki(P) = R(G) in Kg-theory
H*(P,Z)=Z  inintegral cohomology.

This implies that
X(M,G) = x(M/G) + N(c(G) - 1)

where N is the number of fixed points and ¢(&) is the number of conjugacy classes
of G. On the other hand, from the resolution

x((M/G)") = x(M/G) + N¢.
But, by a result of McKay [10]

dG)=£+1
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which establishes (3.1). As a famous example take M to an abelian surface (complex
torus), G=Z,. Then N =16, £=1 and ( M/G)’' isdiffeomorphictoa K3 surfacc
whichhas x = 24 . It was well known to physicists that (3.1) held in many special cases
including the K3 surface.

In homotopy thcory Hopkins and Kuhn [8] have investigated a hierarchy of gen-
eralized cohomology theories (beginning with H*, K*,...) and have found formulas
involving n-tuples of commuting clements of G at the nth level of the hierarchy. It is
not clear what precise relation their work has to the physics of loop spaces or the Euler
characteristics studied here. Note however that the two formulae

x(M/G) = Ilﬁlzg x(M?9) (Lefschetz formula)
x(M,G) = & 0 x(M%9) (Theorem 1)
e

91.92

suggest that one might consider

1
5
113253

summed over commuting triples, and that this might have something to do with G-equi-
variant elliptic cohomology (which is esscntially the next theory in the hierarchy).
Finally we would like to draw attention to a very intcresting commutative algebra,
derived from equivariant K -theory, which has been introduced by Lusztig {9]. This is
Ko(G) ® C where (& acts on itself by conjugation. The multiplication in this algebra
is induced by the multiplication in . It has been pointed out to us by R. Dijkgraaf and
others that Lusztig’s algebra can be interpreted as the Verlinde algebra (at level zero) for
-the finite group G [13], [14]. It seems therefore that K -thcory appears very naturally
in conformal field theory, at least when (' is finite. It would be interesting to investigate
its role in greater detail and in particular to consider K for compact (non-finite) Lic

groups.
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